Prediction of Core Losses of Three-Phase Distribution Transformer

نویسندگان

  • Mihail Digalovski
  • Krste Najdenkoski
  • Goran Rafajlovski
چکیده

Transformers are normally designed and built for use at rated frequency and sinusoidal load current. A non-linear load on a transformer leads to harmonic power losses which cause increased operational costs and additional heating in transformer parts. It leads to higher losses, early fatigue of insulation, premature failure and reduction of the useful life of the transformer. To prevent these problems, the rated capacity of transformer which supplies harmonic loads must be reduced. In this work, a typical 50 kVA three-phase distribution transformer with real practical parameters is taken under non-linear loads generated due to domestic loads. The core losses is evaluated using the three dimensional model of the transformer developed in FEM (finite element method) program based on valid model of transformer under high harmonic conditions. And finally a relation associated with core losses and amplitude of high harmonic order are reviewed & analyzed and then a comparison is being carried out on the results obtained by different excitation current in transformer windings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of New Suggested Ferroresonance Limiter on the Stability Domain of Ferroresonance Modes in Power Transformers Considering Metal Oxide Surge Arrester Effect

this work studies the effect of neutral earth resistance on the controlling ferroresonance oscillation in the power transformer including MOV surge arrester. A simple case of ferroresonance circuit in a three phase transformer is used to show this phenomenon and the three-phase transformer core structures including nonlinear core losses are discussed. The effect of MOV surge arrester and neutra...

متن کامل

A synergetic neural network-genetic scheme for optimal transformer construction

In this paper, a combined neural network and an evolutionary programming scheme is proposed to improve the quality of wound core distribution transformers in an industrial environment by exploiting information derived from both the construction and transformer design phase. In particular, the neural network architecture is responsible for predicting transformer iron losses prior to their assemb...

متن کامل

Prediction of iron losses of wound core distribution transformers based on artificial neural networks

This paper presents an artificial neural network (ANN) approach to predicting and classifying distribution transformer specific iron losses, i.e., losses per weight unit. The ANN is trained to learn the relationship of several parameters affecting iron losses. For this reason, the ANN learning and testing sets are formed using actual industrial measurements, obtained from previous completed tra...

متن کامل

Nonlinear Model of Tape Wound Core Transformers

Recently, tape wound cores due to their excellent magnetic properties, are widely used in different types of transformers. Performance prediction of these transformers needs an accurate model with ability to determine flux distribution within the core and magnetic loss. Spiral structure of tape wound cores affects the flux distribution and always cause complication of analysis. In this paper, a...

متن کامل

Minimization of Active Part Cost of a 100 kVA Distribution Transformer Using Exhaustive Search Method

This paper addresses the optimum transformer design problem to minimize the active part cost of three phase core type distribution transformer. The transformer design process involves substantial heuristic exercise to select the design, best suited to a set of specifications. The design problem considers minimization of total cost of core and conducting material, while constraints are imposed o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014